Pituitary adenylate cyclase-activating peptide as a neurotransmitter in the canine ileal circular muscle.

نویسندگان

  • J A Fox-Threlkeld
  • T J McDonald
  • Z Woskowska
  • K Iesaki
  • E E Daniel
چکیده

Pituitary adenylate cyclase-activating peptide (PACAP)1-27, PACAP1-38, and vasoactive intestinal peptide (VIP) initiated dose-dependent contractions of canine ileal circular muscle after intra-arterial injection in vivo or ex vivo. PACAP1-27- and VIP-induced contractions approached the tissue maximum; VIP was 100-fold less potent. PACAP1-38 was more potent than VIP. PACAP1-27 contractions in vivo were unaffected by hexamethonium, reduced equally by atropine or atropine plus hexamethonium, and abolished by tetrodotoxin (TTX), suggesting that PACAP released acetylcholine and another excitatory neurotransmitter from postganglionic cholinergic enteric nerves. In myenteric plexus-free circular muscle strips, PACAP1-27 at 10(-9) M and PACAP1-38 or VIP at 10(-7) M increased [3H]acetylcholine release during nerve stimulation, suggesting the locus of one postganglionic site at which PACAP1-27 acts. All agonists inhibited nerve-mediated contractions in vivo with a potency rank order similar to that for excitation. Inhibition of nitric oxide (NO) synthetase or TTX decreased the duration and amplitude of PACAP1-27- but not PACAP1-38-induced inhibition. Inhibition of NO synthetase abolished VIP-induced inhibition, but TTX did not. Submaximal contractions to acetylcholine were amplified by PACAP1-27 or VIP before TTX and inhibited after TTX. Thus, both PACAP molecules and VIP directly inhibit and indirectly excite smooth muscle contractions. PACAP1-27 and VIP also release NO. The functional potency differences between PACAP1-27 and VIP suggest PAC1 receptors mediate all responses, likely through the stimulation of adenylate cyclase.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Locations and molecular forms of PACAP and sites and characteristics of PACAP receptors in canine ileum.

In canine ileum we investigated the distribution of pituitary adenylate cyclase-activating peptide (PACAP), using immunofluorescence and radioimmunoassay and the binding of 125I-PACAP-27 to membranes. Nerve profiles immunoreactive to PACAP-27, and often to vasoactive intestinal polypeptide (VIP) as well, were found in all plexi, but PACAP was present in ∼100-fold lesser amounts than VIP. High-p...

متن کامل

Pituitary adenylate cyclase-activating peptide 38 a potent endogenously produced dilator of human airways.

Pituitary adenylate cyclase-activating peptide (PACAP) 38 displays several biological activities relevant to obstructive airway disease. In this study, the occurrence of PACAP 38 in human small bronchi and corresponding pulmonary arteries was analysed immunocytochemically. The dilatory effects of this peptide on the same structures were also studied in vitro. A moderate number of PACAP-like imm...

متن کامل

Neuroprotective roles of pituitary adenylate cyclase-activating polypeptide in neurodegenerative diseases

Pituitary adenylate cyclase-activating polypeptide (PACAP) is a pleiotropic bioactive peptide that was first isolated from an ovine hypothalamus in 1989. PACAP belongs to the secretin/glucagon/vasoactive intestinal polypeptide (VIP) superfamily. PACAP is widely distributed in the central and peripheral nervous systems and acts as a neurotransmitter, neuromodulator, and neurotrophic factor via t...

متن کامل

Pituitary adenylate cyclase activating peptide regulates neurally mediated airway responses.

To clarify the protective effects of pituitary adenylate cyclase activating peptide (PACAP) on airway narrowing, we examined the effects of PACAP on smooth muscle contraction and plasma extravasation in guinea-pig airways. Smooth muscle contraction evoked by electrical field stimulation (EFS) or exogenously applied acetylcholine (ACh) or substance P (SP) was measured before and after PACAP in v...

متن کامل

Development of simplified vasoactive intestinal peptide analogs with receptor selectivity and stability for human vasoactive intestinal peptide/pituitary adenylate cyclase-activating polypeptide receptors.

Vasoactive intestinal peptide (VIP) is a widespread neurotransmitter whose physiological and pathophysiological actions are mediated by two receptor classes, VIP/pituitary adenylate cyclase-activating polypeptide (VPAC) 1 and VPAC2. VIP is a 28-amino acid peptide that is rapidly degraded and simplified; metabolically stable analogs are needed. In this study, we use information from studies of t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of pharmacology and experimental therapeutics

دوره 290 1  شماره 

صفحات  -

تاریخ انتشار 1999